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ABSTRACT

The design of benchmark imagery for validation of image an-
notation algorithms is considered. Emphasis is placed on im-
agery that contains industrial facilities, such as chemical re-
fineries. An application-level facility ontology is used as a
means to define salient objects in the benchmark imagery. In-
strinsic and extrinsic scene factors important for comprehen-
sive validation are listed, and variability in the benchmarks
discussed. Finally, the pros and cons of three forms of bench-
mark imagery: real, composite and synthetic, are delineated.

Index Terms— Benchmark imagery, Algorithm valida-
tion, Ontology, Benchmark variability, Real annotated im-
agery, Validation using synthetic imagery

1. INTRODUCTION

Searching large image databases for remotely-sensed indus-
trial facilities is a complex and difficult task [1, 2]. Part of
the difficulty, as illustrated in Figure 1, lies in the fact that fa-
cilities are complex geospatial arrangements of functionally
interdependent objects. One approach to this problem is to
label and ascertain the relative spatial locations of objects in
the imagery, and use these attributes as keys for the search [3].
An important step in the development of such auto-annotation
algorithms is a verification and validation (V&V) strategy [4].
A properly designed and implemented V&V strategy estab-
lishes and quantifies the conditions under which an annota-
tion algorithm can be applied to imagery with an expecta-
tion of success. Furthermore, a key component of the V&V
methodology is a large, well-designed set of benchmark im-
agery [5, 6].

In this paper we propose a methodology to design bench-
mark imagery for the V&V of facility annotation algorithms.
Rather than taking an ad-hoc approach of seeking and an-
notating available facility imagery, we propose to design the
benchmarks by specifying the attributes of the imagery, and
then acquire imagery that best meets the specifications. In the
context of facility annotation algorithms, benchmark imagery

Fig. 1. Four real imagery examples of chemical refineries
illustrating the large layout variation within a single industry
type, with the last example manually annotated. (Copyright
Digital Globe 2008.)

refers to imagery of facilities in which objects relevant to the
purpose of the facility have been annotated.

2. DESIGN OF BENCHMARK IMAGERY

The design of benchmark imagery involves several considera-
tions including intrinsic scene attributes (objects in the scene
and their geospatial relationships), extrinsic scene attributes
(e.g., illumination, sensor characteristic, etc. that describe
how a 3D scene is mapped into a 2D image), and annota-
tion labels. Central to our approach is an application-level
ontology that provides a principled means to determine ob-
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jects that compose a facility, objects that constitute clutter,
and standardized annotations. Realizing that comprehensive
validation requires benchmarks that span a wide range of in-
trinsic and extrinsic factors, we consider both the variability
and uncertainty associated with benchmark imagery. In pass-
ing we note that the design of benchmark imagery is closely
related to the metrics and processes used to validate the algo-
rithms. While we are aware of this relationship, and implicitly
account for it in our design methodology, we defer discussion
of the validation process and associated issues to future pub-
lications.

2.1. Ontology for Scene Objects and their Annotations

Following the outline presented in [4], we consider the use
of an application-level ontology as a means to specify phys-
ical objects that populate the scene in benchmark imagery.
Ontology is a useful tool to represent subject-matter expert
(SME) knowledge about industrial facilities [1, 4]. Typi-
cally ontologies utilize formal languages like the Web On-
tology Language (OWL) and the Knowledge Interchange
Format (KIF) to represent domain-specific or more general
knowledge. They are capable of depicting various levels
of generalization and aggregation as conceptualized by the
domain experts. For example, an ontology of industrial fa-
cilities would contain a classification of industrial facilities
(manufacturing, power generation, etc.), classifications of the
elements of industrial facilities (building, pipe, access roads,
storage tanks, etc.), and relations that tie facility elements
into explicit geographical features with observable qualities.

By integrating domain knowledge from a large number of
experts and recognized knowledge sources such as textbooks
and standards, ontologies are capable of describing variability
of the concepts (e.g., typical ranges in planimetric area for
building footprints) and the relationships between them (e.g.,
next-to and far-away). Ontology also provides a means of
defining the objects, and standardized annotations, that are
salient, pertinent, or unrelated to the purpose of the facility.

2.2. Intrinsic and Extrinsic Factors

Automation of facility annotation requires some degree of im-
age segmentation. Hence, a comprehensive validation of im-
age annotation algorithms must consider the underlying im-
age segmentation algorithms. Both intrinsic and extrinsic fac-
tors play a role in image segmentation, as data driven segmen-
tation algorithms tend to rely on the image attributes such as
color (or, in general, pixel intensity), edges, and texture (or
combinations of these attributes). Table 1 lists factors that in-
fluence segmentation (and therefore annotation) of imagery
containing facilities. The list is by no means comprehensive,
but rather serves to illustrate factors to consider when design-
ing benchmark imagery. This list of factors is based on image
interpretation studies, such as [7], and the experience of the

authors when designing collection campaigns and analyzing
facility imagery.

Each factor in Table 1 contains three levels describing
variations of the factor. Facility location and compactness
contribute to the scene information, and based on the level of
information required, the possible segmentation solutions can
vary. For example, in a dense neighborhood a possible seg-
mentation solution would identify spatially co-located simi-
lar objects (group of buildings or group of cars) as a single
segment. In a suburban neighborhood the adjacency of dif-
ferent classes of objects, like trees and buildings, can impact
segmentation performance. Roof type is another parameter
that can impact the segmentation performance — for exam-
ple, multi-faceted roofs tend to be over-segmented. More
than the building size and shape dimensions, the adjacency
of buildings is often a confounding factor for segmentation
algorithms. Sensor characteristics, ambient light conditions,
phenological variations, and climatic conditions also influ-
ence the segmentation solution space. These parameters di-
rectly impact low-level visual elements such as color, edges
and local textures.

2.3. Variability and Uncertainty of the Benchmarks

Variability in benchmark imagery is a key to robust algorithm
validation [4, 5]. Within the context of validation testing,
there are two facets of benchmark variability. First there is the
variation in image content that is representative of the range
of images that may occur for the intended application of a
given algorithm. We assume that this variation can be charac-
terized, or “parameterized,” by factors intrinsic to the scene,
such as different arrangements of buildings and landscaping,
and by factors extrinsic to the scene such as viewing geom-
etry, illumination and sensor artifacts. When selecting a set
of benchmark images for validation testing, representing this
variation is understood as designing a set of tests that cover, to
some degree, the anticipated variety of images that will con-
front the algorithm in its intended application. Because even a
small amount of intrinsic and extrinsic variability in this sense
can give rise to an enormous amount of benchmark imagery,
due to the explosion of possible variable combinations, this
variability poses significant problems for defining and orga-
nizing a benchmark test set to achieve appropriate levels of
coverage.

The second facet of variability is acknowledged by the
fact that given any specific benchmark image, there is vari-
ability in the information in the image (e.g., additive white
Gaussian noise, cropping, compression) simply thought of as
“noise.” The presence of noise, or aleatory uncertainty (see
[4]) in the benchmark influences the mechanisms of compar-
ing the algorithm performance with the benchmark and in in-
terpreting what these comparisons mean for purposes of vali-
dation. The role of this facet of variability is not a component
of validation test problem design, rather it is a component of
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Factor Levels (3)
Facility location Urban, Suburban, Rural
Facility size Small, Medium, Large
Compactness Sparse, Moderate, Dense
Roof type Flat, Sloped, Multi-faceted
Building size Small, Medium, Large
Time of day∗ Mid-Morning, Noon, Dusk
Sensor view angle∗ Nadir, Low-oblique, High-oblique
Spatial scale∗ Small, Medium, Large
Visibility∗ 5, 10, 20 (km)
Cloud cover∗ Clear, Broken, Thin Cirrus
Season∗ Summer, Fall, Winter
Climate zone∗ Tropical, Temperate, Arid

Table 1. Short list of intrinsic and extrinsic factors and asso-
ciated levels. Extrinsic factors are marked with an asterisk.

interpreting what the results of the test mean.
While we previously observed in [4] that validation must

typically engage epistemic uncertainty, here we assume that
each benchmark image has complete knowledge associated
with it, and therefore no epistemic uncertainty. In principle,
the performance of the algorithm could have aleatory uncer-
tainty (for example, stochastic algorithms are used) and epis-
temic uncertainty (specific numerical errors are unknown),
but we also ignore these uncertainties in the present discus-
sion.

Even with the small number of factors and levels listed
in Table 1, it is evident that a very large quantity of imagery
is needed for comprehensive validation. In general, the total
number of benchmark images is T = N × LF where F is
the number of factors, L is the number of levels and N is
the number of images per factor and level combination. In
our example, L = 3, F = 12, and say that we desire N =
3, which yields an estimate of T ≈ 1.6 million images in
the validation ensemble. This amount of imagery could be
reduced by careful subselection of factors and levels. Still, the
volume of imagery involved in validation indicates that non-
traditional benchmarks, such as synthetic imagery, should be
considered.

3. SOURCES OF BENCHMARK IMAGERY

Design and acquisition of remotely-sensed facility imagery
that are suitable for benchmarks is non-trivial even with the
essential scene elements specified as above. One approach is
to acquire imagery using freely available sources such as the
internet. A potential drawback to this approach is that wide
distribution of the benchmark imagery might be prohibited by
copyright and legal issues [5]. Another potential issue with
internet imagery is the lack of image metadata, which is of-
ten useful when processing remotely sensed imagery. Given
these drawbacks, our preference is to obtain facility imagery
directly from image providers. This approach also allows us

the opportunity to specify collection attributes and potentially
achieve the benchmark imagery specifications.

Real imagery is available from several sources in a range
of costs, quality and spatial resolutions. The US Geologi-
cal Survey Earth Resources Observation and Science (EROS)
Center provides aerial photography and satellite imagery at
minimal cost. High resolution imagery from commercial ven-
dors can currently be purchased at prices ranging from ap-
proximately US$500 to $2.5k per full-frame image. Manually
annotating facility imagery is a difficult, tedious, and poten-
tially boring task that is prone to error. The human capital
required for manual annotation is difficult to ascertain, and
greatly depends on the detail and precision of annotation. For
example, annotating obvious objects such as buildings and
large storage vessels can be produced by a novice in a short
amount of time. However, relatively large errors in omission
(completeness of the annotation task) and commission (mis-
interpretation of objects) are likely to be incurred. Annotating
to a greater level of detail, e.g. annotating specific processing
units such as fractional distillation towers, can require several
hours of effort by an experienced image analyst. We prefer the
latter level of annotation detail, as that level provides clues to
the purpose of the facility.

Given the expenses involved, it would be costly to develop
a set of benchmark imagery with appropriate variability using
only real imagery. This fact compels us to consider the use of
composite and synthetic imagery to augment our set of real
imagery as part of our benchmarks. Real imagery can be used
to guide the development of models for synthetic imagery,
and can serve as the foundation for composite imagery. Fea-
tures of interest for the synthetic and composite benchmarks
are determined from the ontology, and would include such
objects as new tanks, piping and specialized vehicles.

Synthetic imagery has obvious advantages in terms of
mass production of large amounts of imagery with controlled
extrinsic variability such as illumination conditions, viewing
geometry and sensor artifacts. It can be generated through an
image rendering process using a geometrically modeled scene
with desired lighting and shading information. Modeling syn-
thetic scenes involving industry facilities requires generating
geometric models at the neighborhood or city scale that in-
clude both man-made objects, such as roads and buildings,
and natural objects, such as grassy fields and trees. These
geometric models can be generated interactively using CAD
tools, which can be time consuming, or automatically using
procedural modeling techniques [8], which have limited fi-
delity. Proper illumination is crucial for accurately capturing
shadows, glints and atmospheric effects in a scene. Develop-
ing tools that can produce the appropriate global illumination
in a semi-automated fashion is essential for streamlining the
rendering process. One of the limitations with synthetic im-
agery is the amount of man-hours required to model an entire
scene. Another limitation is the computational cost of pro-
ducing photorealistic renderings of a synthetic scene. As is
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often the case, there is a tradeoff between rendering quality
and computational efficiency.

Composite imagery can be generated by inserting and
blending smaller foreground images into a larger background
image. Although both foreground and background images
can be either real or synthetic, the most common approach is
to synthesize features of interest into foreground images and
to composite them into a real background image that does
not contain such features at the desired locations. There exist
a variety of techniques developed in the computer graphics
community and the entertainment industry for generating
composite images with varying degrees of photorealism and
computational efficiency (e.g. Poisson image editing [9], bill-
boarding and z-buffer compositing). Likewise, tools from the
remote sensing community, such as DIRSIG [10], can also
be utilized due to their high fidelity and wealth of capabili-
ties. One of the limitations with composite imagery is that
blending between foreground and background images can
create artifacts, such as seams, due to differences in illumi-
nation, scale and noise. The problem with these compositing
artifacts is that they can cause image analysis algorithms to
perform differently than on a non-composite imagery with
the exact same content. Potential benefits aside, the use of
synthetic and composite imagery for algorithm V&V is not
well understood and this topic is an active area of research
[11].

4. SUMMARY

In this paper we propose an approach to the design of bench-
mark imagery. Although our focus is on validation of algo-
rithms that auto-annotate imagery containing industrial facil-
ities, the approach is general and applicable to developing
benchmark imagery for other validation problems. We start
by creating an application-level ontology, which provides a
structured means of specifying the objects, and their spatial
relationships, in the benchmarks. Next, important intrinsic
scene factors, derived from the ontology, and extrinsic scene
factors are listed along with levels for each factor. These two
steps define the contents of the benchmark imagery.

The final step is to create the ensemble of benchmark im-
agery. The number of benchmarks required for comprehen-
sive validation, even for a small number of factors and lev-
els, can be quite large and expensive to acquire. Given these
issues, we propose that the ensemble of benchmark be com-
posed of real, composite and synthetic imagery. Synthetic im-
agery is proposed as a mitigation step against the large num-
ber of anticipated benchmarks. Finally, we note that perform-
ing comprehensive validation is a formidable task, in part due
to the magnitude of the benchmark ensemble. Approaches to
the validation process are considered in a future paper.
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